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Crystallization of a supercooled liquid and of a glass: Ising model approach
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Using Monte Carlo simulations we study crystallization in the three-dimensional Ising model with four-spin
interaction. We monitor the morphology of crystals which grow after placing crystallization seeds in a super-
cooled liquid. Defects in such crystals constitute an intricate and very stable network that separates various
domains by tensionless domain walls. We also show that the crystallization which occurs during the continuous
heating of the glassy phase takes place at a heating-rate-dependent temperature.
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I. INTRODUCTION A promising finite-dimensional model of glassy systems

Although of great experimental and technological impor-IS a three-dimensional Ising model with the four-spin,

tance and the subiect of intensi . tal th i a{)Iaquette, interaction. Recent work has shown that this rela-
. ) ENSIVE experimental, tneoretic ively simple system exhibits a number of properties charac-
and numerical research, crystallization is still far from com-

o2 R ~"teristic of glasses including strong metastabily and slow
pletely understoodll]. One of the main difficulties that hin- ordering under cooling[6]. In addition, certain time-

ders comparison of numerical results with experiments andenendent correlation functions also behave in a way typical
phenomenological theories is the fact that most realistic, offyy glassy systemg7]. Since this model is homogenedie.,
lattice models, which can be studied using molecular dynamgoes not contain quenched disoidérhas a crystal phase
ics simulations, still constitute an enormous computationabhnd under certain conditions it should crystallize. An ex-
challenge. Typically, computationally accessible systemsremely strong metastability of the supercooled liquid in this
contain only up to 16 atoms and can be studied during a model suppresseéwithin the computationally accessible sys-
time interval that is several orders of magnitude shorter thattem size and simulation timepontaneous nucleation, how-
would be required for comparison with experiment. Re-ever, and crystallization was not observed. However, by
cently, however, important developments in this field havekeeping a certain fraction of spins fixed, one enhances an
taken place and some aspects of the numerical simulatior@dered structure and under slow cooling the system evolves
have been successfully compared with experiment antbward the crystal phadé&].
theory[2]. Since the four-spin model has the properties that are re-
A possible alternative for studing crystallization might be quired to model crystallization it would be desirable to ex-
to examine lattice models. Although less realistic, such modamine this process under conditions that more closely re-
els are usually much easier to simulate and in some caseemble experimental realizations. Such an examination is an
analytical approaches can also be used. Since crystallizatiavbjective of the present paper. In Sec. Il we introduce the
typically occurs during slow cooling of a supercooled liquid, model and briefly describe its properties. In Sec. Il we ex-
an appropriate model, depending on the thermodynamic pamine constant-temperature crystallization. To enhance crys-
rameters and history, should exhibit crystal, liquid, andtallization we use some crystallization seeds rather than fix-
glassy characteristics. When the cooling is too fast the liquidng a certain fraction of spins dispersed throughout the
does not crystallize but collapses into the glassy phase. system. We then monitor configurations of the system to
At first sight it seems that a natural candidate for such &xamine the morphology of the growing crystals. We ob-
model might be a standard nearest neighbor interaction Isingerve that for small supercooling the growth of crystals is
model. Crystal and liquid phases can then be easily related tsurface-tension dominated while for larger supercooling ir-
low- and high-temperature phases of this model. Howevenegular crystals are formed. We also examine the distribution
the relatively fast dynamics of standard Ising models preof defects and their stability.
cludes the existence of a glassy phase. In other words, in In Sec. IV we examine crystallization of glass under con-
such models the liquid usually quickly evolves toward thetinuous heating. Without crystallization seeds our model
crystal phase when the temperature is below the transitionever crystallizes and enters the liquid phase at the equilib-
point and does not get trapped in the glassy phase. rium transition temperature. However, when the crystalliza-
Such behavior is typically observed in studies of mosttion is enhanced we observe crystallization that takes place at
Ising-like models but fortunately there are also some excepa heating-rate-dependent temperature. We also estimate the
tions for which the dynamicsan be very slow, similar to critical heating rate and show that this is probably larger than
some glassy systems. Models of this kind might be infinitethe corresponding critical cooling rate. A similar asymmetry
dimensionallmean field, and thus exactly solvable with re- between cooling and heating processes was recently ob-
spect to some quantitid8], or finite dimensional with cer- served experimentally8]. Section V contains our conclu-
tain properties typical of glassy dynamigs. sions.
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Il. THE MODEL AND ITS BASIC PROPERTIES

Our model is the three-dimension@ubic) Ising model
with the four-spin(plaquette interaction, which is described
by the Hamiltonian

=100 t=1000

H=-J > SSSS, (1)
[i,j.k.1

t=3000 t=10000 T=3.52, t=30000
where summation is over all elementary plaquettes &nd _ ] o )
==+1. In the following we putl=1. Recently, mode(1) _ FIG. 1. A plangr sect_lon showing the distribution of “unsatis-
was studied in the context of modeling of conventionalfi€d” Plaquettes. Simulations were done at temperalure3.4 and
glasses[5-7,11. Morover, this model and its extensions for system 5!29“2140 with a crystal seed of S|zte(:3_5. iny for
have been used in certain lattice gauge thedtik the botto_rr_1 rlgh_t plot was t_he temperatdre 3.52. Periodic bound-

Model (1) has a strongly degenerate ground state. ofY conditions i all directions are used.
course, a ferromagnetic configuration minimizes the Hamil- ) ) )
tonian, but one can easily see that any configuration obtaine§om typical experimental setups used in crystal growth. In
from a ferromagnetic one by flipping an entire plane of Spins,oartlcular, the resulting crystal phase is basically homoge-
also belongs to the ground state. Elementary counting show0Us and does not contain any large scale defects. The ob-
that the degeneracy of the ground state equialsvBereL is jective of tr_\g next two sections is to examine the model
the linear system size. Let us note that lamellar structures, fd¢nder conditions that are more representative of real crystal
example, made of parallel ferromagnetic layers, also belongoWth experiments.
to the ground state, and in the next section we discuss the
role of such structures in the formation of defects.

Results of various Monte Carlo simulations for this model
can be summarized as follows. The model has two equilib- First we examine the constant-temperature crystallization
rium phases: high- and low-temperature phases referred to @$ a supercooled liquidi.e., T,<T<T.). As an initial con-
liquid and crystal. A first order transition between them takediguration we take a random configuration of spins and to
place at temperaturé= T~ 3.6. However, this transition is enhance crystallization we add a centrally placed crystal seed
screened by the very strong metastability of the model upowf a cubic cluster of “up” spins. This configuration then
both cooling and heating. Of particular interest to our studyevolves according to the standard Metropolis algorifi.
is the metastability of the liquid: in the temperature rangeWhen the size of the seed is sufficiently large the surround-
3.4<T<3.6 the crystal is thermodynamically stable since itsing liquid will gradually crystallize.
free energy is lower than that of the liquid, but nevertheless Due to the strong degeneracy of the ground state many
even very long simulations are not sufficient to transform thevarieties of domains are formed during the evolution of the
liquid into the crystal. Only below =T,~3.4 does the lig- model and visualization of the process constitutes a non-
uid collapse into the glassy phase. Various characteristics dfivial problem. To overcome this difficulty we decided to
glassy dynamics have been shown to be present, such awonitor plaquettes that are “unsatisfied,” i.e., for which
cooling-rate effect§6] and time-dependent correlation func- §S5;SS= —1. In this a way we monitor plaquettes contrib-

IlIl. CONSTANT-TEMPERATURE GROWTH

tions[7]. uting to the excess energdE =E—E,, whereE, is the en-

An important property of glasses is their slow dynamics.ergy of the ground state.
Monte Carlo simulations show that modd) also has slow A typical evolution of our system is shown in Fig. 1. For
low-temperature dynamids$]. In particular, forT<T, the  t=0 unsatisfied plaguettes are found only in the surrounding
excess energyabove the equilibrium valyesE of the ran-  liquid. After a short time {=100) the central seed is basi-

dom quench decays most likely logarithmically in time, cally unchanged but the density of unsatisfied plaquettes is
which should be contrasted with the typical nonconservativeliminished. This is because, due to the relatively fast dynam-
dynamics decaysE~t~ %2 [14] (t is the tim@. The slow ics of the liquid, the random configuration of the external
dynamics of mode(1) was conjectured to be due to diverg- spins has relaxed to a typical liquid configuration, which
ing energy barriers which are generated during the evolutiompparently contains a smaller concentration of unsatisfied
of the quencH5]. plaguettes than a genuinely random configuration. Further
It was observed that even upon very slow continuousggrowth leads to a relatively irregular crystal, which is related
cooling the liquid always collapses into the gléaed not the to the large supercooling;=3.4. For smaller supercooling
crysta) [6]. To transform the liquid into the crystal one has (T=3.52) the resulting crystahlso shown in Fig. JLis more
to enhance crystallization. One possibility already U€dds  regular and with sharper boundaries.
to fix a certain fraction of spins as, e.g., “up.” The fixed In Fig. 1 one can see that the crystal contains a certain
spins are randomly distributed throughout the system. Such faaction of unsatisfied plaquettes. An important question is
procedure strongly favors the ferromagnetic ground statezoncerns is the structure of these excitations: are they point
and it was observed that upon slow cooling the liquid indeedike excitations, which are basically thermal fluctuations, or
crystallizes. However, such a procedure differs considerablgre they large size excitations caused by the complicated
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FIG. 2. A distribution of “unsatisfied” plaquettes. Simulations

were done for a constant temperature and for systemLsiz&00 0.6 |
with crystal seed of siz&’=25. (Only a portion of the system is
shown) Simulation time was larger than the time needed for the 05 |
crystal to fill the whole lattice.
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dynamics of the model? To answer this we looked at the i

three-dimensional structure of the growing crystit us ) ] )

note that Fig. 1 shows only two-dimensional cross sections G- 3. The inverse energy/plaquettee as a function of dis-

Our results, shown in Fig. 2, strongly suggest that the latte nce of the shell from the centernitial configuration as in Fig. 1.
I PR imulations were made foF=3.4. As the time proceeds one can

possibility holds. Indeed, especially for=3.5, one can see i . :

that the unsatisfied plaquettes are not randomly scattered bute . crystallization front moving from left£100) to right ¢
fitut intricat twork =50000). Note that the two late-stage curvestfer20 000 and

cons '# € an intricate n”e \r/]vor_ : el ionl =50000 are almost indistinguishable, which indicates that the re-

At this point we recall that in modéll) tension eSS_StrUC' sulting pattern of defects is almost constant in time.
tures can be formelb,11]. For example, when a cubic clus-

ter of linear size." of “down” spins is surrounded by “Up”  gpin Ising model: due to a doubly degenerate ground state a
spins then the excess energy of such a configuration Sca|%$owing crystal is basically homogeneous.
linearly with L" and not ad.'? as for the ordinary two-spin ™ |t js also important to note that this network of defects is
Ising model. Such scaling is due to the fact that the unsatisgery stable. We monitored the distribution of energy in cubic
fied plaquettes in this case are only those that are located ghe|ls centered at the center of the crystal seed and the re-
the edges of the cubic cluster and not those on its surface agjs, averaged over the number of spins in a given shell, for
in the standard Ising model. The linear nature of the excitageyeral timeg are shown in Fig. 3. One can see the propa-
tions in Fig. 2 confirms that the resulting crystal is composedyation of the crystallization front from the center outward.
of various domains separated by tensionless domain walls.gnce it reaches size of the systetn-@0 000) the profile of

It is well known that metastability, which is an important _ ¢ stapilizes at values smaller than unity, which confirms
property of our model, appears also in other models. FOformation of a stable network of unsatisfied plaquettes. Let
example, let us consider the ferromagnetic two-spin Ising,s note that the late stage profile ok is also a decreasing
model below its critical temperature in a phase with positivernction of the distancé from the origin, which indicates
magnetization. Applying a negative magnetic field, the maynat the density of defects in the resulting crystal increases
jority phase becomes metastaljiél. When the magnetic \yith i
field is weak this metastability might be quite strong, and by - The stability of this network of defects is most likely due
placing a crystallization see(de., the negatively magnetized . energy barriers that appear in this model. We have previ-
cluster of spinswe can observe a gradual but slow growth of o5ly conjectured that these are also responsible for the slow

the thermodynamically stable phase. Using a s_,imilar aPkinetics of the model below the glassy transitice].
proach a number of interesting results concerning crystal

growth have already been obtaingd] with the ferromag-
netic two-spin Ising model. Why then, it is natural to ask, do
we study a similar phenomenon in a more complicated four- Depending on the speed of the process, the cooling of
spin Ising model? In our opinion, there are certain reasons thquid is an important technique used to produce crystals or
believe that crystallization as observed in a four-spin modeglasses. A parallel technique is based on the heating of glass.
(1) is more realistic. First, like real crystals, our crystals areRecently, this technique has been applied to certain metallic
imperfect. These defects appear because crystallizatioglasses, which are rather bad glass forn{&is As in the
which takes place on different faces, leads to formation otooling process, there is a critical heating rate that separates
different domains. This effect is caused by the strong degerthe slow and fast heating regimes. Only slow heating of glass
eracy of the ground state in the modg). In particular, since leads to crystallization while fast heating transforms a glass
lamellar structures are also ground state configurations, weirectly into a liquid.

find that on one side of theH) seed we might have an We performed a series of simulations to check whether
accumulation of ¢) spins while the other side of the seed model (1) exhibits similar behavior. To prepare an initial
might accumulate {) spins. Such growth inevitably pro- glassy configuration we quenched a random configuration of
duces defects, which must appear on the junctions of thesspins atT=0 and let the system relax until the system
different domains. This effect is clearly absent in the two-reached the local minimum-energy configuration. Such a

IV. HEATING OF GLASS
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FIG. 4. The energy of the model as a function of temperature
during continuous heatind- 60) with the heating ratéfrom top
to bottorm) 0.01, 0.001, 0.0001, and 0.000 01. Initial configuration is
obtained by quenching a random samplél'at0 and relaxing the
system until the system reaches a stationary stae a local en-
ergy minimun).

FIG. 5. The energy of the model as a function of temperature
during continuous heatingL& 60) with 5% of spins being fixed

(all up) and with the heating ratérom top to bottonm 0.01, 0.001,
0.0005, 0.0002, 0.0001, and 0.00001. Initial configuration is the
same as in Fig. 4. For<0.0005 the system crystallizes and its
energy in the high-temperature part is the same as during heating of

. . . one of the ground state configurations.
configuration was subsequently heated with the temperature grod gurat

changing linearly in time: We also examined the structure of defects in the resulting
crystals and showed that they form a very stable network
T()=rt, (2 which provides a tensionless separation of different domains

of the crystal. We also examined the evolution of the glassy

wherer is the heating ratd.The unit of time is defined as the phase of our model under continuous heating.

time needed on average for a single, update of each)spin. Crystallization is, of course, a very complex phenomenon

The results of our simulations are shown in Fig. 4. Onevvhich involves diffusion, adsorption at the growth, surface,

can see that within computationally accessible heating rate(,srystal growth and sometimes also additional procekEgls
crystallization of the glass was not observed. These data sug-

S . ach of these processes is complicated and to develop some
gest that for infinitely slow heating the temperature of melt- P P P

: f the al hes th ibrium t tion understanding one has to introduce some simplifying as-
INg ot the glass approaches the equilibrium transition em'sumptions. As a result certain aspects of crystallization can
perature afl = 3.6.

- h llizati d the simpl Ee studied using phenomenological models like the Swift-
0 enhance crystallization we used the simplest approac ohenberg mode[16] or the Kolmogorov-Avrami model

of fixing a certain fraction of spins as “up.” As shown in 17]. In principle, however, all aspects of the crystallization
w%ocess are determined by the underlying microscopic dy-

mics of the model. Evolution of our model is driven by the

Metropolis dynamics which is a standard dynamics for Ising-
type models. In this respect our method is similar to the
molecular dynamics simulations and although our model is

less realistic than off-lattice models it is computationally

Fig. 5 this dramatically changes the behavior and for slo
heating the glass crystallizes. The observed temperature
crystallization depends sensitively on the heating rate

In our simulations we fixed 5% of spins, which is the
same amount as during the coolif@]. Earlier simulations
indicated that for such a fraction of fixed spins the critical

cooling rater; satisfies the inequality 0.0082 ;<0.0005. much less demanding. We consider the results presented here

Results in Fig. 5 suggest that for the critical hgating A as rather preliminary but they clearly indicate that more de-
we have the bound 0.008%,<0.001. These estimates SUg- yajleq studies of the four-spin Ising model are warranted,

gest thatr.<ry. Let us note that a similar asymmetry of

X ¢ which will hopefully clarify other aspects of crystallization.
these two processes is also observed experimenglly
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